Calibration of Machine Learning Models
نویسندگان
چکیده
The evaluation of machine learning models is a crucial step before their application because it is essential to assess how well a model will behave for every single case. In many real applications, not only is it important to know the “total” or the “average” error of the model, it is also important to know how this error is distributed and how well confidence or probability estimations are made. Many current machine learning techniques are good in overall results but have a bad distribution assessment of the error. For these cases, calibration techniques have been developed as postprocessing techniques in order to improve the probability estimation or the error distribution of an existing model. This chapter presents the most common calibration techniques and calibration measures. Both classification and regression are covered, and a taxonomy of calibration techniques is established. Special attention is given to probabilistic classifier calibration.
منابع مشابه
Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملzoning of flood hazard in Nowshahr city using machine learning models
The aim of this study is to predict and model flood hazard in the city of Nowshahr, Mazandaran province using machine learning models. The criteria and indicators affecting flood hazard were identified based on the review of resources, and then the indicators were converted into rasters in ArcGIS environment, and finally standardized by fuzzy method for use in the models. K-nearest neighbor ...
متن کاملMachine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کامل